Автоматическая система контроля

Автоматизация технологических процессов

Влияние дисперсии и нелинейных эффектов на параметры ВОЛС

До недавнего времени PMD второго порядка, учитывающая зависимость поляризационной модовой дисперсии от длины волны, оказывала пренебрежимо малое воздействие на характеристики сети. Но после того, как скорость передачи превысила 10 Гбит/с, это явление встало в ряд факторов, ухудшающих характеристики систем передачи. В одномодовых волокнах большой длины явление PMD второго порядка всегда сопровождается с явлением PMD первого порядка. Тем не менее, PMD второго порядка приводит к снижению эффективности системы только при наличии хроматической дисперсии линии связи или при возникновении чирпирования частоты передатчика. PMD второго порядка может иметь тот же порядок величины, что и хроматическая дисперсия, и прямо пропорциональна длине линии в отличие от PMD первого порядка. Поэтому PMD второго порядка в первую очередь учитывают для линий дальней связи. Однако в отличие от хроматической дисперсии PMD второго порядка проявляет стохастический характер.

Статистика распределения вероятности DGD влияет на PMD второго порядка тем сильнее, чем меньше требуемый коэффициент ошибок. PMD второго порядка в какой-то степени зависит от скорости изменения величины DGD с изменением длины волны. Однако гораздо сильнее величина PMD второго порядка зависит от изменения направления основных состояний поляризации на выходе волокна при изменении частоты оптического сигнала.

Нелинейности. Нелинейные эффекты в волоконной оптике подобны нелинейным эффектам в других физических системах (механических или электронных). Они порождают генерацию паразитных гармоник на частотах равных сумме или разности основных частот системы. Эти дополнительные сигналы приводят к непредсказуемым явлениям потерь в оптических сетях связи.

Нелинейность волокна не является дефектом производства или конструкции волокна. Это неотъемлемое свойство материальной среды при распространении в ней любой электромагнитной энергии. Нелинейные эффекты следует учитывать из-за высокой когерентности используемого лазерного излучения. При заданном уровне передаваемой мощности напряженность электрического поля возрастет с увеличением степени когерентности излучаемых волн. Таким образом, в системах WDM с высокой степенью когерентности оптические сигналы даже умеренной мощности могут приводить к нелинейным явлениям.

Нелинейность волокна становится ощутимой, когда интенсивность лазерного излучения (мощность на единицу поперечного сечения) достигает порогового значения. Кроме того, влияние нелинейностей обнаруживается после прохождения сигналом некоторого пути по волокну в зависимости от параметров, конструкции волокна и условий его работы.

Действительно, напряженность электрического поля E распространяющегося оптического сигнала пропорциональна его мощности P , умноженной на квадратичную по полю нелинейную добавку n2 показателя преломления волокна и деленной на эффективную площадь сердцевины волокна Aeff, и может быть представлена в соответствии с формулой 3.3:

,(3.3)

где:

α - затухание в волокне;

β - фаза распространяющейся волны;

γ - коэффициент нелинейности.

Если предположить, что оптическое излучение распространяется в волокне в виде гауссова пучка, то эффективную площадь можно выразить через диаметр модового поля волокна MFD (Mode Field diameter), как показано в формуле 3.4:

.(3.4)

Для волокон со смещенной дисперсией (рек. ITU-T G.653) и с ненулевой смещенной дисперсией (рек. ITU-T G.655) эффективная площадь Aeff приблизительно равна 50-60 мкм2, в то время как для волокна со смещенной дисперсией (рек. ITU-T G.652) она составляет около 80 мкм2. Иногда используют понятие эффективной длины волокна Leff, дающей тот же эффект, что и величина Aeff. Для типичного одномодового волокна Leff составляет 20 км. Перейти на страницу: 1 2 3 4 5 6

Другие статьи по теме

Микропроцессорная система управления объектом Микропроцессорные и информационно-управляющие системы, в настоящее время, стали одним из наиболее дешевых и быстрых способов обработки информации. Практически ни одна область современно ...

Преобразование кодов Коды обнаружения или обнаружения и исправления ошибок применяются в вычислительных машинах для контроля правильности передач информации между устройствами и внутри устройств машины, а также ...

Аппаратная реализация модулярного сумматора и умножителя на базе ПЛИС В настоящее время невозможно представить себе сложную автоматическую систему без того, чтобы ее центральную часть не составляли вычислительные машины, выполняющие функц ...